Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
Pathog Immun ; 5(1): 133-142, 2020.
Article in English | MEDLINE | ID: covidwho-2253465

ABSTRACT

BACKGROUND: Contaminated surfaces are a potential source for spread of respiratory viruses including SARS-CoV-2. Ultraviolet-C (UV-C) light is effective against RNA and DNA viruses and could be useful for decontamination of high-touch fomites that are shared by multiple users. METHODS: A modification of the American Society for Testing and Materials standard quantitative carrier disk test method (ASTM E-2197-11) was used to examine the effectiveness of UV-C light for rapid decontamination of plastic airport security bins inoculated at 3 sites with methicillin-resistant Staphylococcus aureus (MRSA) and bacteriophages MS2, PhiX174, and Phi6, an enveloped RNA virus used as a surrogate for coronaviruses. Reductions of 3 log10 on inoculated plastic bins were considered effective for decontamination. RESULTS: UV-C light administered as 10-, 20-, or 30-second cycles in proximity to a plastic bin reduced contamination on each of the test sites, including vertical and horizontal surfaces. The 30-second cycle met criteria for decontamination of all 3 test sites for all the test organisms except bacteriophage MS2 which was reduced by greater than 2 log10 PFU at each site. CONCLUSIONS: UV-C light is an attractive technology for rapid decontamination of airport security bins. Further work is needed to evaluate the utility of UV-C light in real-world settings and to develop methods to provide automated movement of bins through a UV-C decontamination process.

3.
Infect Control Hosp Epidemiol ; : 1-7, 2022 Feb 22.
Article in English | MEDLINE | ID: covidwho-2264911

ABSTRACT

OBJECTIVE: To investigate a cluster of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in employees working on 1 floor of a hospital administration building. METHODS: Contact tracing was performed to identify potential exposures and all employees were tested for SARS-CoV-2. Whole-genome sequencing was performed to determine the relatedness of SARS-CoV-2 samples from infected personnel and from control cases in the healthcare system with coronavirus disease 2019 (COVID-19) during the same period. Carbon dioxide levels were measured during a workday to assess adequacy of ventilation; readings >800 parts per million (ppm) were considered an indication of suboptimal ventilation. To assess the potential for airborne transmission, DNA-barcoded aerosols were released, and real-time polymerase chain reaction was used to quantify particles recovered from air samples in multiple locations. RESULTS: Between December 22, 2020, and January 8, 2021, 17 coworkers tested positive for SARS-CoV-2, including 13 symptomatic and 4 asymptomatic individuals. Of the 5 cluster SARS-CoV-2 samples sequenced, 3 were genetically related, but these employees denied higher-risk contacts with one another. None of the sequences from the cluster were genetically related to the 17 control sequences of SARS-CoV-2. Carbon dioxide levels increased during a workday but never exceeded 800 ppm. DNA-barcoded aerosol particles were dispersed from the sites of release to locations throughout the floor; 20% of air samples had >1 log10 particles. CONCLUSIONS: In a hospital administration building outbreak, sequencing of SARS-CoV-2 confirmed transmission among coworkers. Transmission occurred despite the absence of higher-risk exposures and in a setting with adequate ventilation based on monitoring of carbon dioxide levels.

4.
PLoS Genet ; 18(9): e1010200, 2022 09.
Article in English | MEDLINE | ID: covidwho-2009675

ABSTRACT

SARS-CoV-2 whole genome sequencing has played an important role in documenting the emergence of polymorphisms in the viral genome and its continuing evolution during the COVID-19 pandemic. Here we present data from over 360 patients to characterize the complex sequence diversity of individual infections identified during multiple variant surges (e.g., Alpha and Delta). Across our survey, we observed significantly increasing SARS-CoV-2 sequence diversity during the pandemic and frequent occurrence of multiple biallelic sequence polymorphisms in all infections. This sequence polymorphism shows that SARS-CoV-2 infections are heterogeneous mixtures. Convention for reporting microbial pathogens guides investigators to report a majority consensus sequence. In our study, we found that this approach would under-report sequence variation in all samples tested. As we find that this sequence heterogeneity is efficiently transmitted from donors to recipients, our findings illustrate that infection complexity must be monitored and reported more completely to understand SARS-CoV-2 infection and transmission dynamics. Many of the nucleotide changes that would not be reported in a majority consensus sequence have now been observed as lineage defining SNPs in Omicron BA.1 and/or BA.2 variants. This suggests that minority alleles in earlier SARS-CoV-2 infections may play an important role in the continuing evolution of new variants of concern.


Subject(s)
COVID-19 , COVID-19/genetics , Genome, Viral/genetics , Humans , Pandemics , SARS-CoV-2/genetics
5.
Clin Infect Dis ; 74(2): 339-342, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1722257

ABSTRACT

We report 2 episodes of potential SARS-CoV-2 transmission from infected van drivers to passengers despite masking and physical distancing. Whole-genome sequencing confirmed relatedness of driver and passenger SARS-CoV-2. With the heater operating, fluorescent microspheres were transported by airflow >3 meters from the front to the back of the van.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Physical Distancing , Whole Genome Sequencing
8.
Open Forum Infect Dis ; 8(8): ofab328, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1370785

ABSTRACT

BACKGROUND: Health care personnel and patients are at risk to acquire severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in health care settings, including in outpatient clinics and ancillary care areas. METHODS: Between May 1, 2020, and January 31, 2021, we identified clusters of 3 or more coronavirus disease 2019 (COVID-19) cases in which nosocomial transmission was suspected in a Veterans Affairs health care system. Asymptomatic employees and patients were tested for SARS-CoV-2 if they were identified as being at risk through contact tracing investigations; for 7 clusters, all personnel and/or patients in a shared work area were tested regardless of exposure history. Whole-genome sequencing was performed to determine the relatedness of SARS-CoV-2 samples from the clusters and from control employees and patients. RESULTS: Of 14 clusters investigated, 7 occurred in community-based outpatient clinics, 1 in the emergency department, 3 in ancillary care areas, and 3 on hospital medical/surgical wards that did not provide care for patients with known COVID-19 infection. Eighty-one of 82 (99%) symptomatic COVID-19 cases and 31 of 35 (89%) asymptomatic cases occurred in health care personnel. Sequencing analysis provided support for several transmission events between coworkers and in 2 cases supported transmission from health care personnel to patients. There were no documented transmissions from patients to personnel. CONCLUSIONS: Clusters of COVID-19 with nosocomial transmission predominantly involved health care personnel and often occurred in outpatient clinics and ancillary care areas. There is a need for improved measures to prevent transmission of SARS-CoV-2 by health care personnel in inpatient and outpatient settings.

10.
Infect Control Hosp Epidemiol ; 43(10): 1485-1487, 2022 10.
Article in English | MEDLINE | ID: covidwho-1213894

ABSTRACT

Several recent reports have raised concern that infected coworkers may be an important source of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) acquisition by healthcare personnel. In a suspected outbreak among emergency department personnel, sequencing of SARS-CoV-2 confirmed transmission among coworkers. The suspected 6-person outbreak included 2 distinct transmission clusters and 1 unrelated infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Whole Genome Sequencing , Disease Outbreaks , Emergency Service, Hospital
11.
Infect Control Hosp Epidemiol ; 42(2): 215-217, 2021 02.
Article in English | MEDLINE | ID: covidwho-1083571

ABSTRACT

On coronavirus disease 2019 (COVID-19) wards, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid was frequently detected on high-touch surfaces, floors, and socks inside patient rooms. Contamination of floors and shoes was common outside patient rooms on the COVID-19 wards but decreased after improvements in floor cleaning and disinfection were implemented.


Subject(s)
COVID-19/transmission , Environmental Pollution/analysis , Intensive Care Units , Patients' Rooms , SARS-CoV-2/isolation & purification , COVID-19/virology , Clothing , Disinfection/methods , Equipment Contamination , Hospitals, Veterans , Humans , Ohio , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL